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Comparisons of the New to the Previous Edition of the Book

Minor and major changes as well as corrections have been made throughout the new 
edition of the book. Here are the major changes:

	 1.	 Chapter 5 on the Method of Stochastic Gradient Descent is new.
	 2.	 In Chapter 6 (old Chapter 5) on the Least-Mean-Square (LMS) algorithm, major 

changes have been made to the statistical learning theory of LMS in light of the 
Langevin equation and the related Brownian motion.

	 3.	 Chapter 11 on Robustness is new.
	 4.	 The second half of Chapter 13 on Adaptation in Nonstationary Environments 

is completely new, being devoted to the Incremental-Delta-Bar-Delta (IDBD) 
Algorithm and the Autostep Method.

	 5.	 Appendices B and F on the Wirtinger Calculus and the Langevin Equation, respec-
tively, are new.

	 6.	 The Bibliography is new.
	 7.	 The chapters on Adaptive IIR and Complex Neural Networks in the old edition 

have been deleted.

Introductory Remarks on the New Edition 

The subject of adaptive filters constitutes an important part of statistical signal process-
ing. Whenever there is a requirement to process signals that result from operation in an 
environment of unknown statistics or one that is inherently nonstationary, the use of 
an adaptive filter offers a highly attractive solution to the problem as it provides a sig-
nificant improvement in performance over the use of a fixed filter designed by conven-
tional methods. Furthermore, the use of adaptive filters provides new signal-processing 
capabilities that would not be possible otherwise. We thus find that adaptive filters have 
been successfully applied in such diverse fields as communications, control, radar, sonar, 
seismology, and biomedical engineering, among others.

10
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Preface      11

Aims of the Book

The primary aim of this book is to develop the mathematical theory of various 
realizations of linear adaptive filters. Adaptation is accomplished by adjusting the free 
parameters (coefficients) of a filter in accordance with the input data, which, in reality, 
makes the adaptive filter nonlinear. When we speak of an adaptive filter being “linear,” 
we mean the following:

The input-output map of the filter obeys the principle of superposition whenever, 
at any particular instant of time, the filter’s parameters are all fixed.

There is no unique solution to the linear adaptive filtering problem. Rather, we have 
a “kit of tools” represented by a variety of recursive algorithms, each of which offers 
desirable features of its own. This book provides such a kit.

In terms of background, it is assumed that the reader has taken introductory under
graduate courses on probability theory and digital signal processing; undergraduate 
courses on communication and control systems would also be an advantage.

Organization of the Book

The book begins with an introductory chapter, where the operations and different forms 
of adaptive filters are discussed in general terms. The chapter ends with historical notes, 
which are included to provide a source of motivation for the interested reader to plough 
through the rich history of the subject.

The main chapters of the book, 17 in number, are organized as follows:

	 1.	 Stochastic processes and models, which are covered in Chapter 1. This chapter 
emphasizes partial characterization (i.e., second-order statistical description) of 
stationary stochastic processes. As such, it is basic to much of what is presented in 
the rest of the book.

	 2.	 Wiener filter theory and its application to linear prediction, which are discussed in 
Chapters 2 and 3. The Wiener filter, presented in Chapter 2, defines the optimum 
linear filter for a stationary environment and therefore provides a framework for 
the study of linear adaptive filters. Linear prediction theory, encompassing both 
of its forward and backward forms and variants thereof, is discussed in Chapter 3; 
the chapter finishes with the application of linear prediction to speech coding.

	 3.	 Gradient-descent methods, which are covered in Chapters 4 and 5. Chapter 4 pres-
ents the fundamentals of an old optimization technique known as the method 
of steepest descent, which is of a deterministic kind; this method provides the 
framework for an iterative evaluation of the Wiener filter. In direct contrast, 
the follow-up chapter, Chapter 5, presents the fundamentals of the method of 
stochastic gradient descent, which is well-suited for dealing with nonstationary 
matters; the applicability of this second method is illustrated by deriving the 
least-mean-square (LMS) and gradient adaptive lattice (GAL) algorithms.
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	 4.	 Family of LMS algorithms, which occupies Chapters 6, 7, and 8:
	 •	 Chapter 6 begins with a discussion of different applications of the LMS algo-

rithm, followed by a detailed account of the small step-size statistical theory. 
This new theory, rooted in the Langevin equation of nonequilibrium thermo
dynamics, provides a fairly accurate assessment of the transient behavior of 
the LMS algorithm; computer simulations are presented to justify the practi-
cal validity of the theory.

	 •	 Chapters 7 and 8 expand on the traditional LMS algorithm by presenting 
detailed treatments of the normalized LMS algorithm, affine projection 
adaptive filtering algorithms, and frequency-domain and subband adaptive 
LMS filtering algorithms. The affine projection algorithm may be viewed as 
an intermediate between the LMS and recursive least-squares (RLS) algo-
rithms; the latter algorithm is discussed next.

	 5.	 Method of least squares and the RLS algorithm, which occupy Chapters 9 and 
10. Chapter 9 discusses the method of least squares, which may be viewed as the 
deterministic counterpart of the Wiener filter rooted in stochastic processes. In the 
method of least squares, the input data are processed on a block-by-block basis; 
block methods, disregarded in the past because of their numerical complexity, are 
becoming increasingly attractive, thanks to continuing improvements in computer 
technology. Chapter 10 builds on the method of least squares to desire the RLS 
algorithm, followed by a detailed statistical theory of its transient behavior.

	 6.	 Fundamental issues, addressing robustness in Chapter 11, finite-precision effects in 
Chapter 12, and adaptation in nonstationary environments in Chapter 13:

	 •	 Chapter 11 begins by introducing the H∞-theory, which provides the math-
ematical basis of robustness. With this theory at hand, it is shown that the 
LMS algorithm is indeed robust in the H∞-sense provided the chosen step-
size parameter is small, whereas the RLS algorithm is less robust, when both 
algorithms operate in a nonstationary environment in the face of internal 
as well as external disturbances. This chapter also discusses the trade-off 
between deterministic robustness and statistical efficiency.

	 •	 The theory of linear adaptive filtering algorithms presented in Chapters 5 
through 10, is based on continuous mathematics (i.e., infinite precision). When, 
however, any adaptive filtering algorithm is implemented in digital form, 
effects due to the use of finite-precision arithmetic arise. Chapter 12 discusses 
these effects in the digital implementation of LMS and RLS algorithms.

	 •	 Chapter 13 expands on the theory of LMS and RLS algorithms by evalu-
ating and comparing their performances when they operate in a nonsta-
tionary environment, assuming a Markov model. The second part of this 
chapter is devoted to two new algorithms: first, the incremental delta-bar-
delta (IDBD) algorithm, which expands on the traditional LMS algorithm 
by vectorizing the step-size parameter, and second, the Autostep method, 
which builds on the IDBD algorithm to experimentally formulate an adap-
tive procedure that bypasses the need for manual tuning of the step-size 
parameter.

12      Preface
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	 7.	 Kalman filter theory and related adaptive filtering algorithms, which occupy 
Chapters 14, 15, and 16:

	 •	 In reality, the RLS algorithm is a special case of the celebrated Kalman 
filter, which is covered in Chapter 14. A distinct feature of the Kalman filter 
is its emphasis on the notion of a state. As mentioned, it turns out that the 
RLS algorithm is a special case of the Kalman filter; moreover, when the 
environment is stationary, it also includes the Wiener filter as special case. It 
is therefore important that we have a good understanding of Kalman filter 
theory, especially given that covariance filtering and information filtering 
algorithms are variants of the Kalman filter.

	 •	 Chapter 15 builds on the covariance and information filtering algorithms to 
derive their respective square-root versions. To be more specific, the ideas of 
prearray and postarray are introduced, which facilitate the formulation of a 
new class of adaptive filtering algorithms structured around systolic arrays 
whose implementations involve the use of Givens rotations.

	 •	 Chapter 16 is devoted to yet another new class of order-recursive least-
squares lattice (LSL) filtering algorithms, which again build on the covari-
ance and information algorithmic variants of the Kalman filter. For their 
implementation, they exploit a numerically robust method known as QR-
decomposition. Another attractive feature of the order-recursive LSL fil-
tering algorithms is the fact that their computational complexity follows a 
linear law. However, all the nice features of these algorithms are attained 
at the expense of a highly elaborate framework in mathematical as well as 
coding terms.

	 8.	 Unsupervised (self-organized) adaptation, which is featured in the last chapter of 
the book—namely, Chapter 17 on blind deconvolution. The term “blind” is used 
herein to express the fact that the adaptive filtering procedure is performed with-
out the assistance of a desired response. This hard task is achieved by exploiting 
the use of a model that appeals to the following notions:

	 •	 Subspace decomposition, covered in the first part of the chapter, provides a clev-
er but mathematically demanding approach for solving the blind equalization 
problem. To address the solution, use is made of cyclostationarity—an inherent 
characteristic of communication systems—for finding the second-order statistics 
of the channel input so as to equalize the channel in an unsupervised manner.

	 •	 High-order statistics, covered in the second part of the chapter, can be of an 
explicit or implicit kind. It is the latter approach that this part of the chapter 
addresses in deriving a class of blind equalization algorithms, collectively 
called Bussgang algorithms. This second part of this chapter also includes 
a new blind equalization algorithm based on an information-theoretic 
approach that is rooted in the maximum entropy method.

The main part of the book concludes with an Epilogue that has two parts:

	 •	 The first part looks back on the material covered in previous chapters, with some 
final summarizing remarks on robustness, efficiency, and complexity, and how the 
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LMS and RLS algorithms feature in the context of these three fundamentally 
important issues of engineering.

	 •	 The second part of the Epilogue looks forward by presenting a new class of non-
linear adaptive filtering algorithms based on the use of kernels (playing the role 
of a hidden layer of computational units). These kernels are rooted in the re-
producing kernel Hilbert space (RKHS), and the motivation here is to build on 
material that is well developed in the machine literature. In particular, attention 
is focused on kernel LMS filtering, in which the traditional LMS algorithm plays a 
key role; the attributes and limitations of this relatively new way of thinking about 
adaptive filtering are briefly discussed.

The book also includes appendices on the following topics:

	 •	 Complex variable theory
	 •	 Wirtinger Calculus
	 •	 Method of Lagrange multipliers
	 •	 Estimation theory
	 •	 Eigenanalysis
	 •	 The Langevin equation
	 •	 Rotations and reflections
	 •	 Complex Wishart distribution

In different parts of the book, use is made of the fundamental ideas presented in these 
appendices.

Ancillary Material

	 •	 A Glossary is included, consisting of a list of definitions, notations and conven-
tions, a list of abbreviations, and a list of principal symbols used in the book.

	 •	 All publications referred to in the text are compiled in the Bibliography. Each 
reference is identified in the text by the name(s) of the author(s) and the year of 
publication. A Suggested Readings section is also included with many other refer-
ences that have been added for further reading.

Examples, Computer Experiments, and Problems

Many examples are included in different chapters of the book to illustrate concepts and 
theories under discussion.

The book also includes many computer experiments that have been developed to 
illustrate the underlying theory and applications of the LMS and RLS algorithms. These 
experiments help the reader to compare the performances of different members of these 
two families of linear adaptive filtering algorithms.

Each chapter of the book, except for the introductory chapter, ends with problems 
that are designed to do two things:

14      Preface
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	 •	 Help the reader to develop a deeper understanding of the material covered in the 
chapter.

	 •	 Challenge the reader to extend some aspects of the theory discussed in the 
chapter.

Solutions Manual

The book has a companion solutions manual that presents detailed solutions to all the 
problems at the end of Chapters 1 through 17 of the book. A copy of the manual can 
be obtained by instructors who have adopted the book for classroom use by writing 
directly to the publisher.

The MATLAB codes for all the computer experiments can be accessed by going 
to the web site http://www.pearsoninternationaleditions.com/haykin/.

Two Noteworthy Symbols

Typically, the square-root of minus one is denoted by the italic symbol j, and the dif-
ferential operator (used in differentiation as well as integration) is denoted by the italic 
symbol d. In reality, however, both of these terms are operators, each in its own way; it 
is therefore incorrect to use italic symbols for their notations. Furthermore, the italic 
symbol j and the italic symbol d are also frequently used as indices to represent other 
matters, thereby raising the potential for confusion. Accordingly, throughout the book, 
the roman symbol j and the roman symbol d are used to denote the square root of minus 
one and the differential operator, respectively.

Use of the Book

The book is written at a level suitable for use in graduate courses on adaptive signal 
processing. In this context, it is noteworthy that the organization of the material covered 
in the book offers a great deal of flexibility in the selection of a suitable list of topics for 
such a graduate course.

It is hoped that the book will also be useful to researchers and engineers in indus-
try as well as government establishments, working on problems relating to the theory 
and applications of adaptive filters.

Simon Haykin
Ancaster, Ontario,

Canada
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Background and Preview

1.  The Filtering Problem

The term estimator or filter is commonly used to refer to a system that is designed to 
extract information about a prescribed quantity of interest from noisy data. With such a 
broad aim, estimation (filtering) theory finds applications in many diverse fields: com-
munications, radar, sonar, navigation, seismology, biomedical engineering, and financial 
engineering, among others. Consider, for example, a digital communication system, the 
basic form of which consists of a transmitter, channel, and receiver connected together as 
shown in Fig. 1. The function of the transmitter is to convert a message signal (consisting 
of a sequence of symbols, 1’s and 0’s) generated by a digital source (e.g., a computer) 
into a waveform suitable for transmission over the channel. Typically, the channel suffers 
from two major kinds of impairments:

	 •	 Intersymbol interference. Ideally, the impulse response of a linear transmission 
medium is defined by

	 h1 t2 = Ad1 t - t2,	 (1)

Message
signal

Estimated
message signal

Received
signal

Digital
source of

information

Channel

Transmitter Receiver

User
of 

information

Transmitted
signal

Communication system

Figure 1  Block diagram of a communication system.
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20      Background and Preview

where t denotes continuous time, h(t) designates the impulse response, A is an ampli-
tude-scaling factor, d(t) is the Dirac delta function (or unit impulse function), and t 
denotes the propagation delay incurred in the course of transmitting the signal over 
the channel. Equation (1) is the time-domain description of an ideal transmission 
medium. Equivalently, we may characterize it in the frequency domain by writing

	 H1jv2 = A exp 1- jvt2, 	 (2)

where j is the square root of –1, v denotes angular frequency, H(jv) is the fre-
quency response of the transmission medium, and exp (·) stands for the exponen-
tial function. In practice, it is impossible for any physical channel to satisfy the 
stringent requirements embodied in the idealized time-domain description given 
by Eq. (1) or the equivalent frequency-domain description set forth in Eq. (2): 
The best that we can do is to approximate Eq. (2) over a band of frequencies 
representing the essential spectral content of the transmitted signal, which makes 
the physical channel dispersive. In a digital communication system, this channel 
impairment gives rise to intersymbol interference—a smearing of the successive 
pulses (representing the transmitted sequence of 1’s and 0’s) into one another with 
the result that they are no longer distinguishable.

	 •	 Noise. Some form of noise is present at the output of every communication chan-
nel. The noise can be internal to the system, as in the case of thermal noise gener-
ated by an amplifier at the front end of the receiver, or external to the system due 
to interfering signals originating from other sources.

The net result of the two impairments is that the signal received at the channel output 
is a noisy and distorted version of the signal that is transmitted. The function of the 
receiver is to operate on the received signal and deliver a reliable estimate of the original 
message signal to a user at the output of the system.

As another example involving the use of filter theory, consider the situation 
depicted in Fig. 2, which shows a continuous-time dynamic system whose state at time t 
is denoted by the multidimensional vector x(t). The equation describing evolution of the 
state x(t) is usually subject to system errors. The filtering problem is complicated by the 
fact that x(t) is hidden and the only way it can be observed is through indirect measure-
ments whose equation is a function of the state x(t) itself. Moreover, the measurement 
equation is subject to unavoidable noise of its own. The dynamic system depicted in 
Fig. 2 may be an aircraft in flight, in which case the position and velocity of the aircraft 
constitute the elements of the state x(t), and the measurement system may be a tracking 
radar. In any event, given the observable vector y(t) produced by the measuring system 

Dynamic
system

Measuring
system

Estimator

State
x(t)

Observation
y(t) Estimate

of the state
x(t)

System
errors

Measurement
errors

Prior
information

ˆ

Figure 2  Block diagram depicting the components involved in state estimation, namely xn1t2. 
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Section 1  The Filtering Problem      21

over the interval [0, T], and given prior information, the requirement is to estimate the 
state x(t) of the dynamic system.

Estimation theory, illustrated by the two examples just described, is statistical in 
nature because of the unavoidable presence of noise or system errors contaminating the 
operation of the system being studied.

Three Basic Kinds of Estimation

The three basic kinds of information-processing operations are filtering, smoothing, and 
prediction, each of which may be performed by an estimator. The differences between 
these operations are illustrated in Fig. 3:

	 •	 Filtering is an operation that involves the extraction of information about a quan-
tity of interest at time t by using data measured up to and including t.

	 •	 Smoothing is an a posteriori (i.e., after the fact) form of estimation, in that data 
measured after the time of interest are used in the estimation. Specifically, the 
smoothed estimate at time t′ is obtained by using data measured over the interval 
[0, t′], where t′ < t. There is therefore a delay of t − t′ involved in computing the 
smoothed estimate. The benefit gained by waiting for more data to accumulate is 
that smoothing can yield a more accurate estimate than filtering.

	 •	 Prediction is the forecasting side of estimation. Its aim is to derive information 
about what the quantity of interest will be like at some time t + t in the future (for 
some t > 0) by using data measured up to and including time t.

From the figure, it is apparent that both filtering and prediction are real-time operations, 
whereas smoothing is not. By a real-time operation, we mean an operation in which the 
estimate of interest is computed on the basis of data available now.

Span of available data used
in �ltering at time t

tOrigin
Time

(a)

Span of available data used
in smoothing at time t�

Span of available data used
in prediction at time t + t

tt�Origin
Time

(b)

t t + tOrigin
Time

(c)

Figure 3  Illustrating the three basic forms of estimation: (a) filtering; (b) smoothing;  
(c) prediction.
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2. L inear Optimum Filters

We may classify filters as linear or nonlinear. A filter is said to be linear if the filtered, 
smoothed, or predicted quantity at the output of the filter is a linear function of the 
observations applied to the filter input. Otherwise, the filter is nonlinear.

In the statistical approach to the solution of the linear filtering problem, we assume 
the availability of certain statistical parameters (i.e., mean and correlation functions) of 
the useful signal and unwanted additive noise, and the requirement is to design a linear 
filter with the noisy data as input so as to minimize the effects of noise at the filter output 
according to some statistical criterion. A useful approach to this filter-optimization prob-
lem is to minimize the mean-square value of the error signal defined as the difference 
between some desired response and the actual filter output. For stationary inputs, the 
resulting solution is commonly known as the Wiener filter, which is said to be optimum 
in the mean-square-error sense. A plot of the mean-square value of the error signal ver-
sus the adjustable parameters of a linear filter is referred to as the error-performance 
surface. The minimum point of this surface represents the Wiener solution.

The Wiener filter is inadequate for dealing with situations in which nonstationarity 
of the signal and/or noise is intrinsic to the problem. In such situations, the optimum fil-
ter has to assume a time-varying form. A highly successful solution to this more difficult 
problem is found in the Kalman filter, which is a powerful system with a wide variety of 
engineering applications.

Linear filter theory, encompassing both Wiener and Kalman filters, is well devel-
oped in the literature for continuous-time as well as discrete-time signals. However, for 
technical reasons influenced by the wide availability of computers and the ever increas-
ing use of digital signal-processing devices, we find in practice that the discrete-time 
representation is often the preferred method. Accordingly, in subsequent chapters, we 
only consider the discrete-time version of Wiener and Kalman filters. In this method of 
representation, the input and output signals, as well as the characteristics of the filters 
themselves, are all defined at discrete instants of time. In any case, a continuous-time 
signal may always be represented by a sequence of samples that are derived by observing 
the signal at uniformly spaced instants of time. No loss of information is incurred during 
this conversion process provided, of course, we satisfy the well-known sampling theorem, 
according to which the sampling rate has to be greater than twice the highest frequency 
component of the continuous-time signal. We may thus represent a continuous-time 
signal u(t) by the sequence u(n), n = 0, ;1, ;2, . . . , where for convenience we have nor-
malized the sampling period to unity, a practice that we follow throughout the book.

3. A daptive Filters

The design of a Wiener filter requires a priori information about the statistics of the 
data to be processed. The filter is optimum only when the statistical characteristics of 
the input data match the a priori information on which the design of the filter is based. 
When this information is not known completely, however, it may not be possible to 
design the Wiener filter or else the design may no longer be optimum. A straightforward 
approach that we may use in such situations is the “estimate and plug” procedure. This 
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Section 3  Adaptive Filters      23

is a two-stage process whereby the filter first “estimates” the statistical parameters of 
the relevant signals and then “plugs” the results so obtained into a nonrecursive for-
mula for computing the filter parameters. For real-time operation, this procedure has 
the disadvantage of requiring excessively elaborate and costly hardware. To mitigate 
this limitation, we may use an adaptive filter. By such a system we mean one that is 
self-designing in that the adaptive filter relies for its operation on a recursive algorithm, 
which makes it possible for the filter to perform satisfactorily in an environment where 
complete knowledge of the relevant signal characteristics is not available. The algorithm 
starts from some predetermined set of initial conditions, representing whatever we know 
about the environment. Yet, in a stationary environment, we find that after successive 
adaptation cycles of the algorithm it converges to the optimum Wiener solution in some 
statistical sense. In a nonstationary environment, the algorithm offers a tracking capabil-
ity, in that it can track time variations in the statistics of the input data, provided that 
the variations are sufficiently slow.

As a direct consequence of the application of a recursive algorithm whereby the 
parameters of an adaptive filter are updated from one adaptation cycle to the next, the 
parameters become data dependent. This, therefore, means that an adaptive filter is in 
reality a nonlinear system, in the sense that it does not obey the principle of superposition. 
Notwithstanding this property, adaptive filters are commonly classified as linear or non-
linear. An adaptive filter is said to be linear if its input–output map obeys the principle 
of superposition whenever its parameters are held fixed. Otherwise, the adaptive filter 
is said to be nonlinear.

A wide variety of recursive algorithms have been developed in the literature for 
the operation of linear adaptive filters. In the final analysis, the choice of one algorithm 
over another is determined by one or more of the following factors:

	 •	 Rate of convergence. This is defined as the number of adaptation cycles required 
for the algorithm, in response to stationary inputs, to converge “close enough” 
to the optimum Wiener solution in the mean-square-error sense. A fast rate of 
convergence allows the algorithm to adapt rapidly to a stationary environment of 
unknown statistics.

	 •	 Misadjustment. For an algorithm of interest, this parameter provides a quantitative 
measure of the amount by which the final value of the mean-square error, aver-
aged over an ensemble of adaptive filters, deviates from the Wiener solution.

	 •	 Tracking. When an adaptive filtering algorithm operates in a nonstationary envi-
ronment, the algorithm is required to track statistical variations in the environ-
ment. The tracking performance of the algorithm, however, is influenced by two 
contradictory features: (1) rate of convergence and (2) steady-state fluctuation due 
to algorithm noise.

	 •	 Robustness. For an adaptive filter to be robust, small disturbances (i.e., disturbances 
with small energy) can only result in small estimation errors. The disturbances may 
arise from a variety of factors, internal or external to the filter.

	 •	 Computational requirements. Here the issues of concern include (a) the number 
of operations (i.e., multiplications, divisions, and additions/subtractions) required 
to make one complete adaptation cycle of the algorithm, (b) the size of memory 
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locations required to store the data and the program, and (c) the investment 
required to program the algorithm on a computer.

	 •	 Structure. This refers to the structure of information flow in the algorithm, deter-
mining the manner in which it is implemented in hardware form. For example, an 
algorithm whose structure exhibits high modularity, parallelism, or concurrency is 
well suited for implementation using very large-scale integration (VLSI).

	 •	 Numerical properties. When an algorithm is implemented numerically, inaccuracies 
are produced due to quantization errors, which in turn are due to analog-to-digital 
conversion of the input data and digital representation of internal calculations. 
Ordinarily, it is the latter source of quantization errors that poses a serious design 
problem. In particular, there are two basic issues of concern: numerical stabil-
ity and numerical accuracy. Numerical stability is an inherent characteristic of an 
adaptive filtering algorithm. Numerical accuracy, on the other hand, is determined 
by the number of bits (i.e., binary digits) used in the numerical representation of 
data samples and filter coefficients. An adaptive filtering algorithm is said to be 
numerically robust when it is insensitive to variations in the wordlength used in its 
digital implementation.

These factors, in their own ways, also enter into the design of nonlinear adaptive 
filters, except for the fact that we now no longer have a well-defined frame of refer-
ence in the form of a Wiener filter. Rather, we speak of a nonlinear filtering algorithm 
that may converge to a local minimum or, hopefully, a global minimum on the error-
performance surface.

4. L inear Filter Structures

The operation of a linear adaptive filtering algorithm involves two basic processes: (1) a 
filtering process designed to produce an output in response to a sequence of input data 
and (2) an adaptive process, the purpose of which is to provide a mechanism for the 
adaptive control of an adjustable set of parameters used in the filtering process. These 
two processes work interactively with each other. Naturally, the choice of a structure for 
the filtering process has a profound effect on the operation of the algorithm as a whole.

The impulse response of a linear filter determines the filter’s memory. On this 
basis, we may classify linear filters into finite-duration impulse response (FIR) and 
infinite-duration impulse response (IIR) filters, which are respectively characterized by 
finite memory and infinitely long, but fading, memory.

Linear Filters with Finite Memory

Three types of filter structures distinguish themselves in the context of an adaptive filter 
with finite memory:

1.	 FIR filter. Also referred to as a tapped-delay line filter or transversal filter, the 
FIR filter consists of three basic elements, as depicted in Fig. 4: (a) a unit-delay ele-
ment, (b) a multiplier, and (c) an adder. The number of delay elements used in the filter 
determines the finite duration of its impulse response. The number of delay elements, 
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Section 4  Linear Filter Structures      25

shown as M in the figure, is commonly referred to as the filter order. In this figure, the 
delay elements are each identified by the unit-delay operator z−1. In particular, when z−1 
operates on the input u(n), the resulting output is u(n − 1). The role of each multiplier 
in the filter is to multiply the tap input (to which it is connected) by a filter coefficient 
referred to as a tap weight. Thus, a multiplier connected to the kth tap input u(n – k) 
produces w*

k u(n – k), where wk is the respective tap weight and k = 0, 1, . . . , M. The 
asterisk denotes complex conjugation, which assumes that the tap inputs and therefore 
the tap weights are all complex valued. The combined role of the adders in the filter is 
to sum the individual multiplier outputs and produce an overall response of the filter. 
For the FIR filter shown, the output is given by

	 y(n) = a
M

k = 0

w*
k u (n - k).	 (3)

Equation (3) is called a finite convolution sum in the sense that it convolves the finite-
duration impulse response of the filter, w*

n, with the filter input u(n) to produce the 
filter output y(n).

2.	 Lattice predictor. A lattice predictor has a modular structure, in that it consists 
of a number of individual stages, each of which has the appearance of a lattice—hence 
the name “lattice” as a structural descriptor. Figure 5 depicts a lattice predictor consist-
ing of M stages; the number M is referred to as the predictor order. The mth stage of the 
lattice predictor shown is described by the pair of input–output relations (assuming the 
use of complex-valued, wide-sense stationary input data)

	 fm 1n2 = fm - 1 1n2 + k*mbm - 1 1n - 12 	 (4)

and

	 bm 1n2 = bm - 1 1n - 12 + km fm - 1 1n2, 	 (5)

Figure 4  FIR filter.
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where m = 1, 2, . . . , M, and M is the final predictor order. The variable fm(n) is the mth 
forward prediction error, and bm(n) is the mth backward prediction error. The coefficient 
km is called the mth reflection coefficient. The forward prediction error fm(n) is defined 
as the difference between the input u(n) and its one-step predicted value; the latter is 
based on the set of m past inputs u(n – 1), . . . , u(n – m). Correspondingly, the backward 
prediction error bm(n) is defined as the difference between the input u(n – m) and its 
“backward” prediction based on the set of m “future” inputs u(n), . . . , u(n – m + 1). 
Considering the conditions at the input of stage 1 in the figure, we have

	 f01n2 = b01n2 = u1n2, 	 (6)

where u(n) is the lattice predictor input at time n. Thus, starting with the initial conditions of 
Eq. (6) and given the set of reflection coefficients k1, k2, . . . , kM, we may determine the final 
pair of outputs fM(n) and bM(n) by moving through the lattice predictor, stage by stage.

For a correlated input sequence u(n), u(n – 1), . . . , u(n – M) drawn from a station-
ary process, the backward prediction errors b0(n), b1(n), . . . , bM(n) form a sequence 
of uncorrelated random variables. Moreover, there is a one-to-one correspondence 
between these two sequences of random variables in the sense that if we are given one 
of them, we may uniquely determine the other, and vice versa. Accordingly, a linear 
combination of the backward prediction errors b0(n), b1(n), . . . , bM(n) may be used 
to provide an estimate of some desired response d(n), as depicted in the lower half of  
Fig. 5. The difference between d(n) and the estimate so produced represents the estima-
tion error e(n). The process described herein is referred to as a joint-process estimation. 
Naturally, we may use the original input sequence u(n), u(n – 1), . . . , u(n – M) to produce 
an estimate of the desired response d(n) directly. The indirect method depicted in the 
figure, however, has the advantage of simplifying the computation of the tap weights h0, 
h1, . . . , hM by exploiting the uncorrelated nature of the corresponding backward predic-
tion errors used in the estimation.

3.	 Systolic array. A systolic array represents a parallel computing network ideally 
suited for mapping a number of important linear algebra computations, such as matrix 
multiplication, triangularization, and back substitution. Two basic types of processing 
elements may be distinguished in a systolic array: boundary cells and internal cells. Their 
functions are depicted in Figs. 6(a) and 6(b), respectively. In each case, the parameter r 
represents a value stored within the cell. The function of the boundary cell is to produce 
an output equal to the input u divided by the number r stored in the cell. The function 
of the internal cell is twofold: (a) to multiply the input s (coming in from the top) by 
the number r stored in the cell, subtract the product rs from the second input (coming 
in from the left), and thereby produce the difference u – rs as an output from the right-
hand side of the cell and (b) to transmit the first input s downward without alteration.

Consider, for example, the 3-by-3 triangular array shown in Fig. 7. This systolic 
array involves a combination of boundary and internal cells. In this case, the triangular 
array computes an output vector y related to the input vector u by

	 y = R- Tu,	 (7)

where R−T is the inverse of the transposed matrix RT. The elements of RT are the con-
tents of the respective cells of the triangular array. The zeros added to the inputs of 
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Figure 6  Two basic cells of a systolic array: (a) boundary cell; (b) internal cell.
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Figure 7  Triangular systolic array as example.

the array in the figure are intended to provide the delays necessary for pipelining the 
computation given by Eq. (7).

A systolic array architecture, as described herein, offers the desirable features of 
modularity, local interconnections, and highly pipelined and synchronized parallel pro-
cessing; the synchronization is achieved by means of a global clock.
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Linear Filters with Infinite Memory

We note that the structure of Fig. 4, the joint-process estimator of Fig. 5 based on a lattice 
predictor, and the triangular systolic array of Fig. 7 share a common property: All three 
of them are characterized by an impulse response of finite duration. In other words, 
they are examples of FIR filters whose structures contain feedforward paths only. On 
the other hand, the structure shown in Fig. 8 is an example of an IIR filter. The feature 
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Figure 8  IIR filter, assuming real-valued data.
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that distinguishes an IIR filter from an FIR filter is the inclusion of feedback paths. 
Indeed, it is the presence of feedback that makes the duration of the impulse response 
of an IIR filter infinitely long. Furthermore, the presence of feedback introduces a new 
problem: potential instability. In particular, it is possible for an IIR filter to become 
unstable (i.e., break into oscillation), unless special precaution is taken in the choice of 
feedback coefficients. By contrast, an FIR filter is inherently stable. This explains the 
popular use of FIR filters, in one form or another, as the structural basis for the design 
of linear adaptive filters.

5. App roaches To The Development of Linear Adaptive Filters

There is no unique solution to the linear adaptive filtering problem. Rather, we have 
a “kit of tools” represented by a variety of recursive algorithms, each of which offers 
desirable features of its own. The challenge facing the user of adaptive filtering is, first, 
to understand the capabilities and limitations of various adaptive filtering algorithms 
and, second, to use this understanding in the selection of the appropriate algorithm for 
the application at hand.

Basically, we may identify two distinct approaches for deriving recursive algo-
rithms for the operation of linear adaptive filters.

Method of Stochastic Gradient Descent

The stochastic gradient approach uses a tapped-delay line, or FIR filter, as the structural 
basis for implementing the linear adaptive filter. For the case of stationary inputs, the 
cost function, also referred to as the index of performance, is defined as the mean-square 
error (i.e., the mean-square value of the difference between the desired response and 
the FIR filter output). This cost function is precisely a second-order function of the tap 
weights in the FIR filter. The dependence of the mean-square error on the unknown tap 
weights may be viewed to be in the form of a multidimensional paraboloid (i.e., a “punch 
bowl”) with a uniquely defined bottom, or minimum point. As mentioned previously, we 
refer to this paraboloid as the error-performance surface; the tap weights corresponding 
to the minimum point of the surface define the optimum Wiener solution.

To develop a recursive algorithm for updating the tap weights of the adaptive FIR fil-
ter using the stochastic gradient approach, as the name would imply it, we need to start with 
a stochastic cost function. For such a function, for example, we may use the instantaneous 
squared value of the error signal, defined as the difference between the externally supplied 
desired response and the actual response of the FIR filter to the input signal. Then, differ-
entiating this stochastic cost function with respect to the tap-weight vector of the filter, we 
obtain a gradient vector that is naturally stochastic. With the desire to move towards optimal-
ity, adaptation is performed along the “negative” direction of the gradient vector. The adap-
tive filtering algorithm resulting from this approach may be expressed in words as follows:

	 £ updated
tap@weight

vector
≥ = £ old

tap@weight
vector

≥ + £ learning@
rate

parameter
≥ * £ tap@

input
vector

≥ * a error
signal

b .	
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